Abstract: An emerging discovery in phylogenomics is that interspecific gene flow has played a major role in the evolution of many different organisms. To what extent is the Tree of Life not truly a tree reflecting strict “vertical” divergence, but rather a more general graph structure known as a phylogenetic network which also captures “horizontal” gene flow? The answer to this fundamental question not only depends upon densely sampled and divergent genomic sequence data, but also computational methods which are capable of accurately and efficiently inferring phylogenetic networks from large-scale genomic sequence datasets. Recent methodological advances have attempted to address this gap. However, in the 2016 performance study of Hejase and Liu, state-of-the-art methods fell well short of the scalability requirements of existing phylogenomic studies.
The methodological gap remains: how can phylogenetic networks be accurately and efficiently inferred using genomic sequence data involving many dozens or hundreds of taxa? In this study, we address this gap by proposing a new phylogenetic divide-and-conquer method which we call FastNet. We conduct a performance study involving a range of evolutionary scenarios, and we demonstrate that FastNet outperforms state-of-the-art methods in terms of computational efficiency and topological accuracy.